Entendre Cestas
Damien TOMASELLA et Benoit QUINETTE, Audioprothésistes diplômés d'État
Le nombre de cas ne cessant de progresser avec l’âge, la surdité affecte 6% des 15-24 ans et plus de 65% des 65 ans et plus. Face à cette problématique, la recherche est particulièrement active : au cours de la dernière décennie, des avancées spectaculaires ont été réalisées dans la compréhension des mécanismes et des facteurs génétiques responsables des troubles auditifs. Les récents progrès technologiques devraient permettre d’améliorer les performances des aides auditives et des implants existants, et les scientifiques espèrent désormais pouvoir régénérer des cellules ciliées de l’oreille interne par la thérapie génique.
En France, chaque année, près d’un millier de nouveau-nés (0,25%) sont affectés de surdité. Dans 40% des cas, le trouble est sévère et profond, avec de lourdes conséquences sur l’acquisition du langage oral et sur le développement socio-affectif de l’enfant. Trois quarts des ces surdités sont d’origine génétique (liées à une anomalie de l’oreille), les autres étant acquises au cours de la grossesse ou pendant la période périnatale.
Le nombre de cas ne cesse ensuite de progresser avec l’âge, la surdité touchant 6% des 15-24 ans, 9% des 25-34 ans, 18% des 35-44 ans et plus de 65% des plus de 65 ans. Il s’agit alors de surdités acquises au cours de la vie, suite à des traumatismes acoustiques, des maladies (otites chroniques dans environ 20 % des cas, tumeurs, etc.), des accidents (plongée) ou encore des toxicités médicamenteuses. La plupart de ces facteurs contribue à la destruction progressive de cellules qui jouent un rôle central dans les mécanismes de l’audition (voir plus loin). Le vieillissement peut être associé aux mêmes phénomènes, conduisant à une perte auditive qui apparaît le plus souvent à partir de 50-60 ans. On parle alors de presbyacousie.
Plusieurs degrés de pertes auditives sont observés :
Ces pertes auditives entraînent des conséquences variables sur la vie sociale. Les surdités moyennes ont un impact négatif sur les apprentissages scolaires, le développement cognitif et l’adaptation sociale. Les surdités profondes ne permettent pas l’acquisition du langage oral. Chez les personnes de plus de 65 ans, une perte d’audition est associée à un déclin cognitif (altération de la mémoire, des capacités d’attention ou encore de l’utilisation de certains éléments de langage), sans pour autant favoriser la survenue d’une démence de type maladie d’Alzheimer. Ce déclin est sans doute lié à un isolement social progressif.
Les surdités acquises sont assez fréquemment accompagnées d'acouphènes, une perception auditive (battements, grésillements, sifflements) en l'absence de tout stimulus externe, qui peut être très invalidante.
L’audition résulte du couple oreille-cerveau. L’oreille capte les ondes sonores et transmet les vibrations jusqu’à la cochlée. Là, des cellules ciliées les transforment en signaux électriques transmis jusqu’au cerveau par le nerf auditif. C’est à ce niveau que les sons seront traités, interprétés et mémorisés.
Pour assurer ses fonctions, l’oreille est divisée en trois parties : l’oreille externe se compose du pavillon (la partie visible) et du conduit auditif qui mène jusqu’au tympan. Son rôle est de capter, amplifier et focaliser les sons vers l’oreille moyenne. Lorsque les ondes sonores frappent le tympan, celui-ci se met à vibrer. Ces vibrations parviennent jusqu’à l’oreille moyenne constituée de petits os articulés. Ces osselets les transmettent jusqu’à une membrane appelée fenêtre ovale, située à l’entrée de l’oreille interne. Cette dernière renferme la cochlée, une structure en forme de spirale composée de 15 000 cellules ciliées capables de transformer les vibrations en signaux électriques transmis au cerveau par le nerf auditif.
Plusieurs facteurs peuvent contribuer à la destruction brutale ou progressive des cellules ciliées et du nerf auditif, provoquant un déficit auditif irrémédiable.
Un son correspond à une onde sonore captée par l’oreille et qui fait vibrer le tympan. Sa fréquence correspond au nombre de vibrations par seconde et s’exprime en Hertz. Si elle est faible, le son est grave, à l’inverse, si elle est élevée, le son est aigu. Les fréquences captées par les humains varient de 20 à 20 000 Hz. L’intensité, exprimée en décibels, dépend de l’amplitude des vibrations. Plus elle est importante, plus le son est fort. L'oreille humaine capte des intensités comprises entre 0 et 120 dB, niveau à partir duquel des structures de l'oreille interne peuvent être irréversiblement détruites.
L’exposition au bruit est une cause première de troubles de l’audition. Des niveaux sonores élevés détruisent de façon irréversible les cellules ciliées et altèrent les fibres nerveuses auditives. C’est le cas de nombreux bruits associés à des activités de loisirs (concerts, boîtes de nuit, baladeurs, etc.). La législation du travail a fixé des seuils de tolérance :
Il existe cependant une grande variabilité individuelle face au bruit. Certains gènes semblent notamment influer sur la sensibilité au traumatisme sonore.
Autre cause de surdité, l’ototoxicité de certains médicaments. Des antibiotiques (comme les aminoglycosides) ou des anticancéreux (en particulier le cisplatine) peuvent en effet être toxiques pour le système auditif. Là encore, on observe une variabilité individuelle considérable face à cette toxicité.
La recherche d’un déficit auditif peut être effectuée dès la naissance, de manière rapide, indolore et automatisée. Certains pays européens pratiquent même un dépistage systématique à la naissance. Par la suite, la médecine scolaire ou l’entourage peuvent déceler un déficit. Chez les enfants, les répercussions d'une surdité seront différentes selon qu'elle apparaît avant ou après l'acquisition du langage. Chez l'adulte, le dépistage est proposé dès l’âge de 45-50 ans dans le cadre de la médecine du travail, et plus précocement et régulièrement dans les situations à risque (travail en milieu bruyant, militaires, etc.).
Lorsque le dépistage décèle un risque de déficience, des tests réalisés dans un cadre spécialisé permettent de définir le type de surdité et son importance.
Les spécialistes constatent que les tests classiques ne permettent pas toujours de dépister une atteinte partielle des fibres des nerfs auditifs, une partie d’entre elles étant suffisante pour analyser les sons. Ainsi, face à des tests normaux mais une plainte persistante d’un patient, notamment une plainte correspondant à une mauvaise compréhension en environnement bruyant, il est nécessaire d’effectuer une audiométrie vocale en environnement bruyant.
Les traitements consistent à rétablir ou à augmenter l'intensité des vibrations parvenant à l'oreille interne, ou à corriger l'anomalie à l'origine de la surdité. Ainsi, lorsque le trouble auditif est lié à un défaut de fonctionnement de la chaîne tympano-ossiculaire, comme une perforation du tympan, une destruction ou un blocage des osselets, l’anomalie peut être corrigée par chirurgie.
En cas de déficits auditifs légers à modérés, des aides auditives conventionnelles, dites en conduction aérienne, sont proposées aux patients. Leur fonctionnement repose sur la captation du son par un ou plusieurs microphones. Le signal capté est traité par un microprocesseur, amplifié puis réémis via un écouteur placé dans le conduit auditif externe. Des aides en conduction osseuse peuvent également être utilisées. Elles permettent de stimuler directement l’oreille interne à travers les os du crâne : les vibrations sonores sont captées par un microphone et transmises à l’os temporal par un vibrateur placé derrière l’oreille. Les vibrations de la paroi osseuse autour de la cochlée sont alors transférées aux cellules ciliées.
Pour les surdités très sévères, voire totales, des implants sont recommandés. Il en existe deux types : l’implant d’oreille moyenne fonctionne à l’image des aides en conduction osseuse. Il est fixé sur un osselet ou à proximité de l'oreille interne, capte les vibrations et les transmet à l’oreille interne. L’implant cochléaire comprend quant à lui un processeur externe qui transforme les sons en signaux électriques. Ces derniers sont transmis (sous forme d’ondes) à la partie interne de l’implant. Le rôle de celle-ci est d’émettre des impulsions électriques (grâce à des électrodes) qui stimulent les fibres du nerf auditif. Avec cette technique, la compréhension requiert du temps et un apprentissage pour intégrer les informations reçues. Globalement, comprendre dans le silence est acquis par la grande majorité des patients, mais une conversation dans le bruit ou la musique est une situation sonore difficile. Chez l’enfant atteint de surdité profonde, l’implantation cochléaire précoce (entre 12 et 24 mois) a montré d’excellents résultats sur l’acquisition du langage oral.
Une nouvelle tendance consiste à associer aides auditives et implants chez certains patients souffrant de surdités sévères, mais chez lesquels il existe un reliquat d’audition : les implants stimulent la cochlée pour mieux percevoir les sons, particulièrement en fréquences aigues, et les aides auditives augmentent la perception des sons graves.
Les chercheurs connaissent encore mal l’histoire naturelle de la surdité et tentent de comprendre pourquoi certaines personnes sont plus vulnérables que d’autres au bruit, ou connaissent une perte des cellules ciliées ou des fibres nerveuses auditives liée à l’âge plus rapide.
Il a récemment été établi qu’il existe deux types de fibres nerveuses connectées aux cellules ciliées dans la cochlée. Parmi elles, 95% des fibres transmettent l’information sonore au cerveau et les 5% restantes sont des fibres différentes (non myélinisées) et spécialisées dans la transmission d’un signal d’alerte en cas de bruit trop intense, si les cellules ciliées sont malmenées. Concrètement, au-delà d’un certain seuil d’inconfort, ces fibres sont activées et transmettent au cerveau un message douloureux (ou en tout cas désagréable), permettant de prévenir l’individu sur la nécessité de retrouver un environnement plus calme. C’est cette seconde catégorie de fibres qui vient d’être découverte. Elle pourrait jouer un rôle dans la vulnérabilité individuelle au bruit et des travaux sur ce sujet sont en cours.
L’identification de mutations génétiques responsables de surdités constitue, par ailleurs, un axe récent de recherche. Ces mutations affectent des gènes codant pour des protéines impliquées dans le développement ou le fonctionnement de la cochlée. Les surdités génétiques sont le plus souvent des maladies monogéniques, c’est-à-dire impliquant l’altération d’un seul gène. L’un d’eux, DFNB1, découvert en 1997 par l’équipe de Christine Petit dans l’unité de génétique des déficits sensoriels de l'Institut Pasteur, explique à lui seul 50% des surdités congénitales. La connaissance de ces gènes permet de réaliser des diagnostics moléculaires et du conseil génétique pour les familles concernées. Dans certains cas, elle contribue également au choix de la méthode de réhabilitation.
Les scientifiques envisagent la régénération par la thérapie génique des cellules ciliées endommagées. Des résultats prometteurs ont en effet déjà été obtenus sur des cochlées d'oiseaux. L’idée est d’obtenir de nouvelles cellules auditives fonctionnelles à partir de cellules de soutien qui restent présentes après la mort des cellules ciliées. Le transfert du gène Math1 dans l’oreille interne (grâce à un virus) permet d’induire la différenciation des cellules de soutien en cellules sensorielles fonctionnelles. Les données disponibles indiquent qu’il suffirait d’obtenir quelques dizaines de cellules sensorielles pour améliorer considérablement les performances des implants cochléaires.
Les progrès technologiques ont permis d’améliorer les performances des aides auditives.
Source : https://www.inserm.fr/information-en-sante/dossiers-dinformation/troubles-de-laudition-surdites